skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Contreras, Carlos"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. The type Ia supernova (SN) 2012fr displayed an unusual combination of its Si II λλ5972, 6355 features. This includes the ratio of their pseudo-equivalent widths, placing it at the border of the shallow silicon (SS) and core normal (CN) spectral subtype in the Branch diagram, while the Si II λ6355 expansion velocities place it as a high-velocity (HV) object in the Wang et al. spectral type that most interestingly evolves slowly, placing it in the low-velocity gradient (LVG) typing of Benetti et al. Only 5% of SNe Ia are HV and located in the SS+CN portion of the Branch diagram, and fewer than 10% of SNe Ia are both HV and LVG. These features point toward SN 2012fr being quite unusual, similar in many ways to the peculiar SN 2000cx. We modeled the spectral evolution of SN 2012fr to see if we could gain some insight into its evolutionary behavior. We use the parameterized radiative transfer code SYNOW to probe the abundance stratification of SN 2012fr at pre-maximum, maximum, and post-maximum light epochs. We also use a grid of W7 models in the radiative transfer code PHOENIX to probe the effect of different density structures on the formation of the Si II λ6355 absorption feature at post-maximum epochs. We find that the unusual features observed in SN 2012fr are likely due to a shell-like density enhancement in the outer ejecta. We comment on possible reasons for atypical Ca II absorption features, and suggest that they are related to the Si II features. This paper includes data gathered with the 6.5 m Magellan Baade Telescope, located at Las Campanas Observatory, Chile. 
    more » « less
  3. null (Ed.)
  4. We examine the early phase intrinsic (B - V)0 color evolution of a dozen SNe Ia discovered within three days of the inferred time of first light (t first) and have (B - V)0 color information beginning within five days of t first. The sample indicates there are two distinct early populations. The first is a population exhibiting blue colors that slowly evolve, and the second population exhibits red colors and evolves more rapidly. We find that the early blue events are all 1991T/1999aa-like with more luminous, slower declining light curves than those exhibiting early red colors. Placing the first sample on the Branch diagram (i.e., ratio of Si II λλ5972, 6355 pseudo-Equivalent widths) indicates that all blue objects are of the Branch shallow silicon (SS) spectral type, while all early red events except for the 2000cx-like SN 2012fr are of the Branch Core Normal (CN) or CooL (CL) type. A number of potential processes contributing to the early emission are explored, and we find that, in general, the viewing-angle dependance inherent in the companion collision model is inconsistent with all of the SS objects with early-time observations being blue and exhibiting an excess. We caution that great care must be taken when interpreting early phase light curves as there may be a variety of physical processes that are possibly at play and significant theoretical work remains to be done. 
    more » « less
  5. The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a “Cosmology” sample of ˜100 Type Ia supernovae located in the smooth Hubble flow (0.03 ≲ z ≲ 0.10). Light curves were also obtained of a “Physics” sample composed of 90 nearby Type Ia supernovae at z ≤ 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented. 
    more » « less